

Audit report for LoanSnap

19/10/2021

2

bHOME audit report
1. Executive summary

The following audit report presents the effect of the research that Blockhunters team

conducted on bHOME smart contracts (ver. 0.2 according to the documentation). The research

was conducted in an audit process from 09/09/2021 till 18/10/2021 by the Blockhunters team

based on the code delivered by LoanSnap.

Our audit focused on verifying the ver. 0.2 mechanisms – PropertyToken, DevUSDC and

upgradeable Pools. We’ve conducted penetration tests and validated compliance with the

documentation.

Blockhunters team has checked the possibility of known Ethereum attacks to be exploited

in the code. Fortunately, smart contracts contain basic and well-designed functionalities that

are not vulnerable to known Ethereum attacks from SWC Registry. LoanSnap developers have

implemented really good practices in the code, including using Open-Zeppelin and SafeMath

libraries that significantly lower the risk of possible miscalculations and errors. All of the

contracts, methods and state variables were tested and none of them poses any threat to the

contract safety.

We have verified the correctness of Interest Rate calculation as one of the most

important variables used in the code which serves as a basis for other variables. No issues were

found in this case. Blockhunters auditors have found 2 minor vulnerabilities in Pool functions,

which serve as a source of information for external calls and therefore do not pose any threat

to the smart contracts themselves in the current form.

A comprehensive suite of unit tests was written for this project and is available as an

attachment to this report.

To sum up, we are happy to say that the ver. 0.2 of bHOME smart contract suite is safe

and can be used in the market and for further development of the mechanism.

For the sake of clarity we introduced the following issues symbols:

✓ works fine!

• works fine although modifications are recommended

x major vulnerability (can lead to tokens theft or network failure)

The following, clickable table of contents represents a list of all the issues found.

3

1.1. Liability clause

Please note that Blockhunters Company doesn’t verify the economic foundation of the

project but only its code correctness and security issues. We do not take any responsibility for

any misuse or misunderstanding of the information provided and potential economic losses

due to faulty investment decisions. This document doesn’t ensure that the code itself is free

from potential vulnerabilities that were not found. If any questions arise please contact us by

www.blockhunters.io.

1.2. Commit hash and MD5 hashes

Before using the smart contracts, please verify MD5 commit hashes with the following
ones, which describe the files that were audited between 09/09/2021 and 18/10/2021.

Commit a8fda9f596d233d57c575e797f35256ad42b858d

Filename MD5

Pool0 6e8b2cfc6439cb658ed94e42fccb9063

Pool1 a67450b473f0a9fdd8f81589dd370b0d

DevUSDC 650993890ef8251ac3c93d3399c160fc

PropToken0 74d3b428d491092f114e2f0e51d32a23

2. Table of contents

1. EXECUTIVE SUMMARY ... 2

✓ works fine! ... 2
• works fine although modifications are recommended.. 2

x major vulnerability (can lead to tokens theft or network failure) ... 2

1.1. LIABILITY CLAUSE ... 3

1.2. COMMIT HASH AND MD5 HASHES .. 3

2. TABLE OF CONTENTS .. 3

3. SECURITY AUDIT... 4

3.1. ERRORS KNOWN FROM ETHEREUM ... 4
✓ Reentrancy attack .. 4
✓ Race conditions ... 4
✓ Integer over / underflow ... 4
✓ Timestamps ... 4
✓ Library dependencies .. 5
✓ Front-running .. 5
✓ DoS .. 5
✓ Insufficient gas griefing ... 5

http://www.blockhunters.io/

4

✓ Token deposit and creation ... 5

3.2. AUTOMATED TOOLS ... 5
✓ Mythril ... 5
✓ Slither .. 6

4. BUSINESS LOGIC AUDIT .. 6

4.1. WORKFLOW MECHANISMS .. 6
✓ Verification of the governance mechanism based on ERC777 standard, including proposals, voting

and distribution among the Lenders. ... 6
✓ Analysing Pool creation mechanism with support for stablecoins and other coins. 6
✓ Verification of Lender – HCPool exchange mechanism with capital delivery and locking. 6
✓ Examining the borrowing mechanism – PropertyToken creation and dynamic interest rate for pools. 7
✓ Running through PropertyToken mechanisms – Registry management and storage, ownership and

Pool upgrading.. 7
✓ Analysing loan repayment mechanism with emphasis on per-block interest rate and possible

vulnerabilities / errors there. ... 7
✓ Verification of repayment mechanisms, including voting and reclaiming value for the Lenders. 7

4.2. HOMEDAO METHODS CHECK .. 8

4.2.1. Pool0 ... 8

4.2.2. Pool1 ... 9

4.2.3. DevUSDC ... 11

4.2.4. PropToken0 ... 11

4.3. INTERESTACCRUED TEST .. 12

5. SUGGESTIONS .. 13

3. Security audit

3.1. Errors known from Ethereum

✓ Reentrancy attack

Non-susceptible. The contracts adhere to ERC20, ERC777 and ERC721 protocol and use

OpenZeppelin standards where possible.

✓ Race conditions

Flow of the system is linear and straightforward. Nothing time-sensitive and requiring

synchronicity is performed.

✓ Integer over / underflow

Contracts use the newest solc version where SafeMath library is built-in, which prevents

this class of errors.

✓ Timestamps

5

Custom logic dependent on block.timestamp is a source of many leaks as it can be

influenced by the miners. The contract is safe from any such attacks.

✓ Library dependencies

 All used dependencies are in the source files.

✓ Front-running

 Front running isn’t a risk for integrity of the system with its current capabilities.

Foreseeing transactions before visible in the block won’t have any bad results for the users.

✓ DoS

Neither of the contracts can be rendered inoperable by the users

✓ Insufficient gas griefing

Non-susceptible. The contracts don’t use any low-level contract calls, thus this error

won’t occur. This attack may be possible on a contract which accepts generic data and uses it

to make a call another contract (a 'sub-call') via the low-level address.call() function, as is often

the case with multi-signature and transaction relay contracts.

✓ Token deposit and creation

Asset flow follows the specification models and the logic is well tested for integration

external smart contracts

3.2. Automated tools

✓ Mythril

- Version number: v0.22.21

- Performed by: AK

- Date, time: 3.10.2021

- Results: No vulnerability detected

6

✓ Slither

- Version number: 0.7.1

- Performed by: PP

- Date, time: 1.10.2021

- Results: No vulnerability detected

4. Business logic audit

4.1. Workflow mechanisms

✓ Verification of the governance mechanism based on ERC777 standard,

including proposals, voting and distribution among the Lenders.

Governance mechanisms for lenders are not implemented yet. Pool tokens are distributed

among Lenders properly.

✓ Analysing Pool creation mechanism with support for stablecoins and other

coins.

Pool creation mechanism is safe. Contract is upgrading as intended. The use of DevUSDC has

been tested and no issues were found.

✓ Verification of Lender – HCPool exchange mechanism with capital delivery

and locking.

Locking of the capital is not implemented yet. HCPool exchange mechanism is tested and

working properly.

7

✓ Examining the borrowing mechanism – PropertyToken creation and

dynamic interest rate for pools.

Due to the linear flow of the program, the mechanism of taking a loan is safe. There is no

possibility of a reentrancy attack. Interest is calculated correctly, which has been tested over a

long period of time. The getInterestRate function returns the correct result for the given size of

the potential loan.

✓ Running through PropertyToken mechanisms – Registry management and

storage, ownership and Pool upgrading.

Property Tokens used in Pool1 are working correctly. Their use does not create an opportunity

to attack.

✓ Analysing loan repayment mechanism with emphasis on per-block interest

rate and possible vulnerabilities / errors there.

Loan repayment mechanism is safe. The different repayment cases are well separated. Servicer

will receive a fee with each loan repayment. The repay function does not create any

opportunity for a reentrancy attack.

✓ Verification of repayment mechanisms, including voting and reclaiming

value for the Lenders.

Redeem function successfully burns the sender's hcPool tokens and transfers the DevUSDC back

to them. No vulnerabilities were found.

8

4.2. HomeDAO methods check

4.2.1. Pool0

Method Status Information

Pool0.initialize OK

Pool0.setApprovedAddress OK

Pool0.isApprovedAddress OK

Pool0.isApprovedServicer OK

Pool0.getContractData OK

Pool0.getPoolValueWithInterest OK

Pool0.getPoolBorrowed OK

Pool0.getSupplyableTokenAddress OK

Pool0.getServicerAddress OK

Pool0.getUserLoans OK

Pool0.getAllLoans OK

Pool0.getActiveLoans OK

Pool0.getLoanAccruedInterest OK

Pool0.getLoanDetails OK

Pool0.getAverageInterest Minor division by zero

9

Pool0.mintProportionalPoolTokens OK

Pool0.lend OK

Pool0.redeem OK

Pool0.getInterestRate OK

Pool0.borrow OK

Pool0.repay OK

Pool0.hasUpgradedFunction Minor should return false

4.2.2. Pool1

Method Status Information

Pool1.initialize OK

Pool1.setApprovedAddress OK

Pool1.isApprovedAddress OK

Pool1.isApprovedServicer OK

Pool1.getContractData OK

Pool1.getPoolValueWithInterest OK

Pool1.getPoolBorrowed OK

Pool1.getSupplyableTokenAddress OK

10

Pool1.getServicerAddress OK

Pool1.getUserLoans OK

Pool1.getAllLoans OK

Pool1.getActiveLoans OK

Pool1.getLoanAccruedInterest OK

Pool1.getLoanDetails OK

Pool1.getAverageInterest Minor division by zero

Pool1.mintProportionalPoolTokens OK

Pool1.lend OK

Pool1.redeem OK

Pool1.getInterestRate OK

Pool1.borrow OK

Pool1.repay OK

Pool1.hasUpgradedFunction OK

Pool1.onERC721Received OK

11

4.2.3. DevUSDC

Method Status Information

BUSDC.constructor OK

4.2.4. PropToken0

Method Status Information

PropToken0.initialize OK

PropToken0.isApprovedServicer OK

PropToken0.getLienValue OK

PropToken0.getPropTokenCount OK

PropToken0.getPoolAddress OK

PropToken0.getPropTokenData OK

PropToken0.mintPropToken OK

12

4.3. interestAccrued test

This variable is one of the most important source of information for the whole smart

contract suite to operate smoothly. Therefore we have tested it’s value for further steps in

time.

Formula for calculating the interest:

Loan = 1000000000000000

loan.interest = 2000000

numberOfSecondsInADay = 86400

interestPerSecond = (principal * loan.interest) / (1000000 * 31622400)

interestPerDay = interestPerSecond * numberOfSecondsInADay

interest accrued up to the Nth day = interestPerDay * N

interest accrued

day computed by the smart contract computed from the formula

0 0 0

1 5464480838400 5464480838400

2 10928961676800 10928961676800

3 16393442515200 16393442515200

4 21857923353600 21857923353600

…

50 273224041920000 273224041920000

51 278688522758400 278688522758400

52 284153003596800 284153003596800

53 289617484435200 289617484435200

54 295081965273600 295081965273600

55 300546446112000 300546446112000

…

95 519125679648000 519125679648000

96 524590160486400 524590160486400

97 530054641324800 530054641324800

98 535519122163200 535519122163200

99 540983603001600 540983603001600

100 546448083840000 546448083840000

13

...

996 5442622915046400 5442622915046400

997 5448087395884800 5448087395884800

998 5453551876723200 5453551876723200

999 5459016357561600 5459016357561600

1000 5464480838400000 5464480838400000

5. Suggestions

contract: Pool1

“// contracts/Pool0.sol” should be replaced with “// contracts/Pool1.sol “

// contracts/Pool0.sol
// SPDX-License-Identifier: MIT

contracts: Pool0, Pool1

functions: getPoolValueWithInterest, getPoolBorrowed

These functions have wrong descriptions:

/**
 * @dev Function getPoolValueWithInterest() returns the contract address of

ERC20 this pool accepts (ususally USDC)
 */
 function getPoolValueWithInterest() public view returns (uint256) {
 uint256 totalWithInterest = poolLent;

 for (uint i=0; i<loans.length; i++) {
 totalWithInterest = totalWithInterest.add(getLoanAccruedInterest(i));
 }

 return totalWithInterest;
 }

 /**
 * @dev Function getPoolBorrowed() returns the contract address of ERC20 this

pool accepts (ususally USDC)
 */
 function getPoolBorrowed() public view returns (uint256) {
 return poolBorrowed;
 }

 /**
 * @dev Function getSupplyableTokenAddress() returns the contract address of

ERC20 this pool accepts (ususally USDC)
 */
 function getSupplyableTokenAddress() public view returns (address) {
 return ERCAddress;
 }

14

contract: Pool1

function: onERC721Received

Documentation for this function is missing.

 function onERC721Received(
 address,
 address,
 uint256,
 bytes memory
) public pure override returns (bytes4) {
 return this.onERC721Received.selector;
 }

contract: Pool0

function: hasUpgradedFunction

Pool0 has not been upgraded yet. hasUpgradedFunction should return false.

/**
 * @dev Function hasUpgradedFunction returns bool depending on if contract has

been upgraded or not
 */
 function hasUpgradedFunction() public pure returns (bool) {
 return true;
 }

contracts: Pool0, Pool1

function: borrow

Documentation states that borrow returns the loan ID and fixed Interest Rate, but the

function returns nothing.

/**
 * @dev Function borrow creates a new Loan, moves the USDC to Borrower, and

returns the loan ID and fixed Interest Rate
 * - Also creates an origination fee for the Servicer in HC_Pool
 * @param amount The size of the potential loan in (probably usdc).
 * @param maxRate The size of the potential loan in (probably usdc).
 * EDITED in pool1 to also require a PropToken
 * EDITED in pool1 - borrower param was removed and msg.sender is new recepient

of USDC
 */
 function borrow(uint256 amount, uint256 maxRate, uint256 propTokenId) public {
 //for v2 require this address is approved to transfer propToken
 require(PropToken0(propTokenContractAddress).getApproved(propTokenId) ==

address(this), "pool is not approved to move propToken");
 //also require msg.sender is owner of token
 require(PropToken0(propTokenContractAddress).ownerOf(propTokenId) ==

msg.sender, "msg.sender is not propToken owner");

 //check the requested interest rate is still available
 uint256 fixedInterestRate = uint256(getInterestRate(amount));

15

 require(fixedInterestRate <= maxRate, "interest rate no longer available");

 //require the propToken approved has a lien value less than or equal to the

requested loan size
 require(PropToken0(propTokenContractAddress).getLienValue(propTokenId) >=

amount, "Loan amount too large for propToken value");

 //first take the propToken
 PropToken0(propTokenContractAddress).safeTransferFrom(msg.sender,

address(this), propTokenId);

 //create new Loan
 Loan memory newLoan = Loan(loanCount, msg.sender, fixedInterestRate, amount,

0, block.timestamp);
 loans.push(newLoan);
 userLoans[msg.sender].push(loanCount);

 //map new loanID to Token ID
 loanToPropToken[loanCount] = propTokenId;

 //update system variables
 loanCount = loanCount.add(1);
 poolBorrowed = poolBorrowed.add(amount);

 //finally move the USDC
 IERC20Upgradeable(ERCAddress).transfer(msg.sender, amount);

 //then mint HC_Pool for the servicer (fixed 1% origination is better than

standard 2.5%)
 mintProportionalPoolTokens(servicer, amount.div(100));
 }

contracts: Pool0, Pool1

function: getAverageInterest

Division by zero if borrowedCounter is equal to 0.

function getAverageInterest() public view returns (uint256) {
 uint256 sumOfRates = 0;
 uint256 borrowedCounter = 0;

 for (uint i = 0; i < loans.length; i++) {
 if(loans[i].principal != 0){
 sumOfRates =

sumOfRates.add(loans[i].interestRate.mul(loans[i].principal));
 borrowedCounter = borrowedCounter.add(loans[i].principal);
 }
 }
 return sumOfRates.div(borrowedCounter);
 }

=

contract: Pool0, Pool1

variable: ERCAddress

ERCAddress should be constant.

address ERCAddress;

16

contract: Pool1

function: isApprovedServicer

isApprovedServicer function is internal, never used and should be removed.

 function isApprovedServicer(address _address) internal view returns (bool) {
 bool isApproved = false;

 for (uint256 i = 0; i < servicerAddresses.length; i++) {
 if (_address == servicerAddresses[i]) {
 isApproved = true;
 }
 }

 return isApproved;
 }

contract: Pool0, Pool1

variables: servicerFeePercentage, baseInterestPercentage, curveK

These constant variables are not UPPER_CASE_WITH_UNDERSCORES.

 uint256 constant servicerFeePercentage = 1000000;

 uint256 constant baseInterestPercentage = 0;

 uint256 constant curveK = 200000000;

contract: PropToken0

variables: servicerAddresses, poolAddresses

servicerAddresses and poolAddresses are arrays, but they only store one value.

 address[] servicerAddresses;

 address[] poolAddresses;

contract: Pool1

function: initializePoolOne

This function should be able to be called only once.

function initializePoolOne(address propTokenContract) public {
 require(msg.sender == servicer);
 _name = "bHome";
 _symbol = "bHME";
 propTokenContractAddress = propTokenContract;
 }

17

Thank you!

Contact us at:

heyhunters@blockhunters.io

www.blockhunters.io

mailto:heyhunters@blockhunters.io
http://www.blockhunters.io/

